Kyle Meets Friedman: Informed Trading When Anticipating Future Information

Hongjun Yan (DePaul) Liyan Yang (Toronto and ABFER) Xueyong Zhang (CUFE) Deqing Zhou (CUFE)

May 20, 2025

How Do Asset Prices Distill Investors' Information?

"Information leakage" via prices and quantities:

- ► Trading prices, e.g., Kyle (1985).
- ▶ Disclosure: Trade quantities are disclosed/detected:
 - Full disclosure, e.g., insider trading laws (Huddart et al., 2001);
 - Partial disclosure, e.g., regulatory filings by mutual funds, ETFs, and hedge funds;
 - Detection of the informed investor's trades (Yang and Zhu, 2020).
- ▶ We model both
 - One informed trader
 - Sequential private information
 - Post-trading (partial) disclosure

Main Results: Kyle Meets Friedman

- ▶ 2-P Model \Rightarrow Info-usage Problem \Leftrightarrow Consumption Problem
 - ▶ information usage \rightarrow consumption
 - information arrival \rightarrow income
 - ▶ cumulated unused information \rightarrow wealth

▶ Friedman (1957): permanent income hypothesis

- Rainy days, Consumption smoothing, Precautionary saving
- \triangleright C_t depends on the expectation of lifetime income.
- ▶ Trading, price discovery, and liquidity
- ▶ Trading depends on current and expected future info
- ▶ Why can we transform a 2-P model into a 1-P one?
 - ▶ The insider's **commitment value** is zero
 - ▶ 2-P equilibrium \Rightarrow 1-P optimization

Setup

► Kyle (1985) is extended with

- ▶ Post-trading disclosure (Huddart et al., 2001)
- Sequential information arrivals
- ▶ N trading periods: n = 1, ..., N
- One risky asset with final liquidation value, $F \sim \mathcal{N}(0, \sigma_F^2)$,

$$F \equiv \sum_{n=1}^{N} F_n$$

where $F_n \sim \mathcal{N}(0, \sigma_{F_n}^2)$ and is serially independent.

Players and Information

▶ Two liquidity demanders:

- ▶ One risk-neutral informed investor: Insider
 - \blacktriangleright observes F_n in period n
 - \blacktriangleright trades x_n shares
- Noise traders demand $u_n \sim \mathcal{N}(0, \sigma_u^2)$
 - ▶ Wrong beliefs; hedging; ESG; liquidity (love): private value
- ▶ One liquidity supplier: Risk-neutral market maker
 - observes the aggregate order flow: $y_n = x_n + u_n$
 - sets the trading price P_n
 - Bertrand competition or representative aggregation of the rest of the market

Post-Trade Disclosure

The insider must disclose after his trade d_n = x_n + ε_n, with ε_n ~ N(0, σ_ε²)
Perfect disclosure (HHL, 2001): σ_ε² = 0
Imperfect disclosure: σ_ε² > 0
Kyle (1985): σ_ε² = ∞

Baseline model: $\sigma_{\epsilon}^2 = 0$

• The market maker's information set in period n:

$$\begin{split} \mathcal{I}_{n}^{M} &\equiv \{y_{1},...,y_{n},x_{1},...,x_{n-1}\}\\ \mathcal{I}_{n+}^{M} &\equiv \{y_{1},...,y_{n},x_{1},...,x_{n-1},x_{n}\} \end{split}$$

▶ HHL (2001) is a special case

•
$$\sigma_{F_1} = \sigma_F$$
.
• $\sigma_{F_i} = 0$, for $i = 2...N$

Decisions in Period n

• At the trading time, the market maker sets the price to

$$P_n = E[F|\mathcal{I}_n^M],$$

After disclosure, the market maker adjusts the price to

$$P_n^* = E[F|\mathcal{I}_{n+}^M].$$

▶ The informed investor:

$$\max_{x_n,\dots,x_N} E\left[\sum_{j=n}^N \pi_j |\mathcal{I}_n^I\right],\,$$

where $\mathcal{I}_n^I \equiv \{F_1, ..., F_n, P_1, ..., P_{n-1}, P_1^*, ..., P_{n-1}^*\}.$

Timeline

n^-	n	n^+	

The insider observes F_n .

- An insider and noise traders submit x_n and u_n respectively;
- Market maker observes $y_n = x_n + u_n$, sets price as P_n , and fills all demands.

• The insider announces publicly x_n and market maker updates the price to P_n^* ;

• If n = N, F is announced.

Equilibrium and Equivalence

Linear Equilibrium

• Conjecture and verify a linear equilibrium:

$$x_{n} = \beta_{n} \left(\sum_{i=1}^{n} F_{i} - P_{n-1}^{*}\right) + z_{n}$$
$$P_{n} = P_{n-1}^{*} + \lambda_{n} y_{n},$$
$$P_{n}^{*} = P_{n-1}^{*} + \gamma_{n} x_{n},$$

,

where $z_n \sim \mathcal{N}(0, \sigma_{z_n}^2), P_0^* = 0.$

▶ $\{\beta_n, \lambda_n, \gamma_n, \sigma_{z_n}\}$ are determined in equilibrium.

- ▶ Pure strategy: $\sigma_{z_n}^2 = 0$, fully reveals the insider's info
- Mixed strategy: $\sigma_{z_n} > 0$, saves info for future use

►
$$k_n^2 \equiv Var(P_n^* - P_{n-1}^*)$$
: info used in period n

Equilibrium Characterization

Theorem (Proof)

There is a unique linear equilibrium with,

$$\beta_n = \frac{k_n \sigma_u}{\Sigma_n + k_n^2}, \lambda_n = \frac{k_n}{2\sigma_u}, \gamma_n = \frac{k_n}{\sigma_u}, \sigma_{z_n}^2 = \frac{\Sigma_n}{\Sigma_n + k_n^2} \sigma_u^2, \quad (1)$$

where
$$\Sigma_n = \sum_{i=1}^n \sigma_{F_i}^2 - \sum_{i=1}^n k_i^2$$
,
and $\{k_1, \cdots, k_N\} \in \mathbb{R}_{\geq 0}^N$ are the unique solution to

$$\max_{\{k_1, \cdots, k_N\} \in \mathbb{R}^N_{\ge 0}} (k_1 + \dots + k_N), \tag{2}$$

subject to
$$\sum_{i=1}^{n} k_i^2 \le \sum_{i=1}^{n} \sigma_{F_i}^2$$
, for $n = 1, ..., N$. (3)

Equivalence to a Consumption-Saving Problem

Reduced to a 1-player Info Usage Problem:

$$\max_{\{k_1, \cdots, k_N\} \in \mathbb{R}_{\geq 0}^N} k_1 + \dots + k_N,$$

s.t.
$$\sum_{i=1}^n k_i^2 \le \sum_{i=1}^n \sigma_{F_i}^2, \text{ for } n = 1, \dots, N.$$

• Equivalent to a Consumption Problem:

$$\max_{\{C_1, \cdots, C_N\} \in \mathbb{R}^N_{\geq 0}} u(C_1) + \dots + u(C_N),$$

s.t.
$$\sum_{i=1}^n C_i \leq \sum_{i=1}^n Y_i, \text{ for } n = 1, \dots, N.$$

where $u(C) = \sqrt{C}$, CRRA with RRA = 1/2.

Transformation by Relabeling

-

Trading game with disclosure	Consumption-saving problem	
Information usage k_n^2	Consumption C_n	
Expected profits $k_n \sigma_u/2$	Utility $\sqrt{C_n}$	
Information endowment $\sigma_{F_n}^2$	Income Y_n	
Unused information amount Σ_n	Wealth S_n	
Asymmetric information transfer	Borrowing constraint	
$k_n^2 \leq \sum_{n-1} + \sigma_{F_n}^2$	$C_n \leq S_n + Y_n$	
• If $k_n^2 < \sum_{n-1} + \sigma_{F_n}^2$, "mixed"	• If $C_n < S_n + Y_n$, "save"	
• If $k_n^2 = \sum_{n-1} + \sigma_{F_n}^2$, "pure"	• If $C_n = S_n + Y_n$, "consume all"	

Kyle Meets Friedman

Permanent Income Hypothesis (Friedman, 1957)

- 1. Saving for rainy days
- 2. Consumption smoothing
- 3. Precautionary saving

- ▶ Implications on the trading model
 - Asset prices
 - Informativeness
 - Market liquidity

1: Saving for Rainy Days

- Saves more today if expects to be poorer tomorrow
- Save more info today if expects less info tomorrow
- Illustrated in the case of N = 2.
 - Saving for rainy days: k_1^2 is increasing in $\sigma_{F_2}^2$.
 - ▶ Use all info if expecting more info next period.

The Case of N = 2

• Case 1: If $\sigma_{F_1} > \sigma_{F_2}$, $(\sigma_{F_2} = 0 \text{ in HHL})$: $\sigma_{z_1}^2 = \frac{\sigma_{F_1}^2 - \sigma_{F_2}^2}{2\sigma_{F_1}^2} \sigma_u^2 \text{ (mixed)}, \quad \sigma_{z_2}^2 = 0 \text{ (pure)},$ $\beta_1 = \frac{\sigma_F \sigma_u}{\sqrt{2}\sigma_{F_1}^2}, \quad \beta_2 = \frac{\sqrt{2}\sigma_u}{\sigma_F}, \quad k_1 = k_2 = \sqrt{\frac{\sigma_{F_1}^2 + \sigma_{F_2}^2}{2}},$ $\lambda_1 = \lambda_2 = \frac{\sigma_F}{2\sqrt{2}\sigma_u}, \quad \gamma_1 = \gamma_2 = \frac{\sigma_F}{\sqrt{2}\sigma_u}.$

Saving for rainy days: k_1^2 is increasing in $\sigma_{F_2}^2$.

$$\begin{array}{l} \bullet \quad \text{Case 2: If } \sigma_{F_1} \leq \sigma_{F_2}, \\ \sigma_{z_1}^2 = \sigma_{z_2}^2 = 0 \text{ (pure strategy)}, \\ \beta_i = \frac{\sigma_u}{\sigma_{F_i}}, \quad \lambda_i = \frac{\sigma_{F_i}}{2\sigma_u}, \quad \gamma_i = \frac{\sigma_{F_i}}{\sigma_u}, \quad k_i = \sigma_{F_i}, \quad \text{for } i = 1, 2. \end{array}$$

Consume everything if expecting to be rich tomorrow.

2. Consumption Smoothing

Information smoothing

▶ In equilibrium, $\{k_1, \dots, k_N\}$ are the unique solution to

s.t.
$$\begin{split} \min_{k_1, \cdots, k_N} (k_1 - \overline{k})^2 + \dots + (k_N - \overline{k})^2, \\ \sum_{i=1}^n k_i^2 &\leq \sum_{i=1}^n \sigma_{F_i}^2, \text{ for } n = 1, \dots, N-1, \\ \sum_{i=1}^N k_i^2 &= \sum_{i=1}^N \sigma_{F_i}^2, \end{split}$$

where $\overline{k} \equiv (k_1 + \dots + k_N)/N$.

• This is equivalent to smoothing $\lambda_1, ..., \lambda_N$.

3. Precautionary Saving

- Save more today if expecting more **uncertainty** tomorrow
- Save more **info** today if expecting more uncertainty
- Illustrated in the case of N = 2:

$$\sigma_{F_2}^2 = \begin{cases} \overline{\sigma}_{F_2}^2 + \Delta, & \text{with probability } \frac{1}{2}, \\ \overline{\sigma}_{F_2}^2 - \Delta, & \text{with probability } \frac{1}{2}. \end{cases}$$

Saving for rainy days: ^{∂k¹₁}/_{∂σ²F₂} > 0
 Precautionary saving: ^{∂k¹₁}/_{∂Δ} < 0

What Is Behind This Transformation? **Answer**: The insider's commitment value K is zero.

▶ 2-P game with commitment \iff 1-P game.

▶
$$K = 0$$
 \iff Eq. w.o. Comm. = Eq. w. Comm.

▶ 2-P equilibrium
$$\Rightarrow$$
 1-P problem

Further results:

▶ In our baseline model:
$$K = 0$$

- ▶ 5 additional cases
 - Time varying noise trading: K = 0.
 - Potential information leakage: K = 0.
 - ▶ Partial disclosure: K = 0 case, K > 0 case.

• Continuous-time model: K = 0.

Commitment Game

Reformulate the game by changing the insider's strategy space:

▶ In period 0, the insider commits to linear trading strategy:

$$x_n = \beta_n (\sum_{i=1}^n F_i - P_{n-1}^*) + z_n, \text{ with } z_n \sim \mathcal{N}(0, \sigma_{z_n}^2)$$

- ▶ In period 0, the insider chooses $\{\beta_n, \sigma_{z_n}\}_n$
 - For example, predetermined plans implemented by algorithms

Time-varying Noise Trading Intensity

▶ Noise trading intensity varies over time $\sigma_{u_i}^2$

• $(\sigma_{F_i}^2, k_i^2, \Sigma_i) \to (Y_i, C_i, S_i)$: nominal quantities.

► Price level: $p_i \equiv 1/\sigma_{u_i}^2$

$$\max_{C_n, \dots, C_N} \sum_{i=1}^N u(C_i/p_i),$$

s.t. $\sum_{i=1}^n C_i \le \sum_{i=1}^n Y_i$, for $n = 1, ..., N$.

Potential Information Leakage

 \blacktriangleright Information is leaked with a probability q each period

$$\blacktriangleright (\sigma_{F_i}^2, k_i^2, \Sigma_i) \to (Y_i, C_i, S_i)$$

$$\max_{\{C_n, \dots, C_N\}} \sum_{i=1}^N q^{i-1} u(C_i),$$

s.t. $\sum_{i=1}^n C_i \le \sum_{i=1}^n Y_i$, for $n = 1, ..., N$.

Continuous-time Limit

 \blacktriangleright Continuous-time limit as trading frequency approaches ∞

 $\blacktriangleright \ (\sigma_F^2(t),\,k^2(t),\,\Sigma(t)) \to (Y(t),\,C(t),\,S(t)).$

$$\max_{\substack{C(t) \ge 0}} \int_0^1 u(C(t)) dt,$$

s.t. $C(t) dt \le S(t) + Y(t) dt,$
 $dS(t) = (Y(t) - C(t)) dt.$

Partial Disclosure

▶ In period n, MM gets d_n : $d_n = x_n + \epsilon_n$, with $\epsilon_n \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$

• Huddart et al. (2001):
$$\sigma_{\epsilon} = 0$$
.

• Kyle(1985): $\sigma_{\epsilon} = \infty$.

▶ N = 2 and $\sigma_{\epsilon} = \infty$, K > 0, transformation doesn't work

• σ_{ϵ} is small: K = 0 and $(\sigma_{F_i}^2, k_i^2, \Sigma_i) \to (Y_i, C_i, S_i),$

$$\max_{\{C_n, \cdots, C_N\}} \sum_{i=1}^{N-1} u(C_i) + \rho u(C_N),$$

s.t.
$$\sum_{i=1}^n C_i \le \sum_{i=1}^n Y_i, \text{ for } n = 1, ..., N,$$

where
$$\rho \equiv \sqrt{\frac{\sigma_u^2}{\sigma_u^2 + \sigma_\epsilon^2}}$$
.

What Drives Commitment Value in Kyle-type Models?

Our exercises suggest:

• 0 commitment value \Rightarrow equivalence

 \blacktriangleright + commitment value \Rightarrow non-equivalence

▶ What drives commitment value in the first place?

▶ Normal distributions + risk-neutrality:

▶ Time dimension:

▶ One period: 0

Continuous time: 0

ightarrow T = 2: +

► Disclosure:

Perfect or precise disclosure: 0

 \blacktriangleright Imprecise disclosure: +

▶ One-period Kyle models (Bernhardt and Boulatov, 2023):

▶ Symmetric Bernoulli distribution of asset value: +

▶ Risk-averse insider: +

Conclusion

- ► A model with a sequence of information arrival and post-trade (partial) disclosure.
- Equilibrium computation is equivalent to solving a consumption-saving model.
- ► Ideas transported from permanent income hypothesis: Information usage today depends on the expectation of future information.
 - Saving for rainy days
 - Consumption smoothing
 - Precautionary saving
- Zero commitment value drives the equivalence result.
 Future research: What drives the commitment value?

Reference

- Bernhardt, D. and Boulatov, A. (2023). Strategic commitment by an informed speculator. *Working Paper*.
- Huddart, S., Hughes, J. S., and Levine, C. B. (2001). Public disclosure and dissimulation of insider trades. *Econometrica*, 69(3):665–681.
- Yang, L. and Zhu, H. (2020). Back-running: Seeking and hiding fundamental information in order flows. *The Review of Financial Studies*, 33(4):1484–1533.