Mortgages, Subways and Automobiles

Sumit Agarwal¹ Yeow Hwee Chua² Pulak Ghosh³ Soumya Kanti Ghosh^{3,4} Liuyang She²

¹National University of Singapore

²Nanyang Technological University

³India Institute of Management Bangalore

⁴State Bank of India

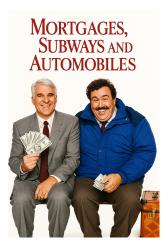
ABFER 2025

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Inspired by Planes, Trains and Automobiles

 In the movie, a journey full of missteps ends with a heartfelt reunion.

Inspired by Planes, Trains and Automobiles



- In our case, a change in daily journeys leads to better financial outcomes.
- When subways expand, households rely less on cars.
- This shift frees up liquidity, helping them pay down mortgages.
- Not just fewer emissions, but fewer defaults.

Background

- Many countries have developed their urban subway networks to reduce their emissions and improve urban mobility.
- Growing research on benefits of the subway:
 - **Direct benefits:** reductions in commuting costs (Gupta et al. (2022)), traffic congestion (e.g., Gu et al. (2021)), and air pollution (e.g., Li et al. (2019)).
 - **Spillover benefits:** increases in innovations (Koh et al. (2022)) and firm-level productivity (Chen and Wu (2024))
- However, direct evidence of subways on household finances remains relatively scarce.

This Paper

- We investigate how subways could affect households' financial well-being through the mortgage market.
- Our setting combines:
 - A unique administrative dataset of mortgage loans in India.
 - The staggered rollout of subway stations across Delhi (2015–2019).
- Main takeaway: Subways ease financial pressure by reducing reliance on car ownership, allowing households to stay current on mortgages or prepay.

Summary of Findings

- After new subway stations opened:
 - Delinquency rates fell by 4.42%; total delinquent amounts dropped 39.2%.
 - Prepayment rates rose by **1.38%**, with a sharp increase in prepayment amounts during the first 3 months.
 - Effects attenuate with distance from the nearest station.
- What explains these patterns?
 - Households spend less on automobiles
 - Monthly auto expenditures decline by **6.5%**.
 - This improves liquidity and frees up cash for mortgage repayment.

(ロ)、(四)、(E)、(E)、(E)

Contribution to Literature

- 1. The Effects of Subways:
 - Gu et al. (2021), Lee and Tan (2024), Severen (2023), Zheng et al. (2016), Harris (2020), etc.

Contribution: Focus on the effects on households' mortgage repayment decisions.

- 2. Mortgage Delinquency:
 - Kaufmann et al. (2011), Low (2023), Ganong and Noel (2023), etc.

Contribution: Support the role of vehicle expenditures on mortgage delinquency.

- 3. Mortgage Prepayment:
 - Gerardi et al. (2023), Amromin et al. (2007), Scharlemann and Shore (2022), etc.

Contribution: Connect mortgage delinquency and prepayment through contrasting impacts of subway expansions.

Delhi Metro

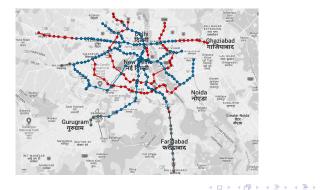
- Delhi's population exceeds 33 million, making reliable transit infrastructure critical.
- The Delhi Metro is one of the world's largest and busiest subway systems, operating over 3,000 trips daily and serving approximately 2.5 million passengers.
- It became the first metro globally to earn UN-certified carbon credits in 2011, reducing emissions by 630,000 tonnes annually.

Phase 3 Expansion and Study Focus

- Phases 1, 2, and 3 were completed in 2006, 2011, and 2021, providing high-capacity, low-emission transportation across Delhi and the NCR.
- Our study focuses on **subway station openings between 2015 and 2019**, the bulk of Phase 3 expansion.
- Phase 3 added over 160 km of new lines, including the Magenta, Pink, and Grey Lines.
- The expansion aimed to enhance connectivity, reduce pollution, and improve quality of life.

Subway Expansions in Delhi

- There are 100 postal codes in Delhi (110000 to 110099).
- On average, a postal code covers around a 2.18 km radius circle.
- Subway stations opened in 41 different postal code areas.
- Figure below maps pre-2014 (blue), 2015–2019 (red), and post-2019/outside Delhi (grey) subway stations.



Mortgage Data

- The administrative data is from one of the largest mortgage lenders in India.
- The dataset is between April 2015 to February 2020.
- It contains detailed records of households' monthly mortgage payments and information of the mortgage applicants.
- We match the postal code of the mortgage applicants with the location of the subway station (Treatment Group).

Key Outcome Variables

- 1. Indicator for Delinquency
- 2. Indicator for Prepayment
- 3. Delinquency Amount
- 4. Prepayment Amount
 - Each month, a borrower is categorized as delinquent if the balance turns negative or as prepaid if it becomes positive.
 - Delinquency or prepayment amount that is the difference between the cumulative installment and the repayment.

Mortgage Data

Data restriction: only focus on the group of households who purchase their properties before subway expansions.

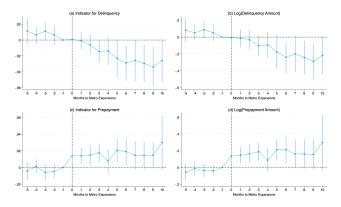
	1	Full Samp	le		Control			Treatmen	t
	Obs.	Mean	St.Dev.	Obs.	Mean	St.Dev.	Obs.	Mean	St.Dev
Mortgage Characteristics									
Delinquency	361,598	0.29	0.45	177,054	0.30	0.46	184,544	0.28	0.45
Delinquency Amount	361,598	7212	76414	177,054	5581	31680	184,544	8777	102340
Prepayment	361,598	0.60	0.49	177,054	0.58	0.49	184,544	0.62	0.48
Prepayment Amount	361,598	84420	373027	177,054	69264	286196	184,544	98963	440040
Monthly Installment	361,598	24271	88764	177,054	21865	64955	184,544	26579	106675
Fixed Interest Rate	9,681	0.14	0.34	5,385	0.11	0.32	4,296	0.17	0.37
Loan Tenure	9,681	7632	2069	5,385	7636	2168	4,296	7629	1938
Loan to Value Ratio	9,681	0.56	0.25	5,385	0.58	0.25	4,296	0.54	0.24
Demographic Characteristics									
Male	9,681	0.69	0.46	5,385	0.68	0.47	4,296	0.70	0.46
Age	9,681	49	10	5,385	48	10	4,296	50	10
Private Company	9,681	0.65	0.48	5,385	0.64	0.48	4,296	0.67	0.47
Annual Income	6,761	413053	1563601	3,782	395791	1030151	2,979	434967	204976

- The subway stations are opened at different timing
 ⇒ staggered treatment timings.
- There are differences in subway stations in terms of size or commuting flow
 - \implies biased TWFE estimates.
- We estimate our results based on a stacked difference-in-differences model (following Deshpande and Li (2019), Cengiz et al. (2019)).

The regression specification can be written as:

$$Y_{ijm} = \sum_{m=\underline{m}, m \neq -1}^{\overline{m}} \beta_m \cdot \text{Treated}_{im} \cdot d_{jm} + \mu_{ij} + \lambda_{jm} + \varepsilon_{ijm}$$
(1)

- *Treated_{im}* indicates the treatment status for households.
- d_{jm} is a dummy variable that equals 1 if an observation in cohort j is m months away from the opening of the new subway station.
- μ_{ij} is individual-by-stack fixed effect.
- λ_{jm} refers to month-by-stack fixed effect.
- ε_{ijm} is the error term.
- Standard errors are clustered by postal code, the level at which treatment is assigned.



- Top Panel: There is a delayed effect, with delinquency beginning to decrease only from the third month after the expansions.
- Bottom Panel: There is an immediate increase in prepayment in the month of subway expansion.

Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment
	Delinquency	Amount)	Prepayment	Amount)
	(1)	(2)	(3)	(4)
Treated \times Post	-0.0442***	-0.392***	0.0138**	0.102
	(0.0101)	(0.0892)	(0.00701)	(0.0746)
Observations	2,484,192	2,484,192	2,484,192	2,484,192
R^2	0.597	0.603	0.684	0.737
Month Fixed Effects	Yes	Yes	Yes	Yes
Account Fixed Effects	Yes	Yes	Yes	Yes

Different Control Groups by Distance

Panel A: Close Postal Code Areas				
Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment
	Delinquency	Amount)	Prepayment	Amount)
	(1)	(2)	(3)	(4)
Treated \times Post	-0.0249**	-0.257***	0.00611	0.0798
	(0.0103)	(0.0967)	(0.00697)	(0.0776)
Observations	1,062,759	1,062,759	1,062,759	1,062,759
R^2	0.606	0.605	0.684	0.738
Month Fixed Effects	Yes	Yes	Yes	Yes
Account Fixed Effects	Yes	Yes	Yes	Yes
Panel B: Far Postal Code Areas				
Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment
	Delinquency	Amount)	Prepayment	Amount)
	(1)	(2)	(3)	(4)
Treated \times Post	-0.0572***	-0.487***	0.0193**	0.120
	(0.0103)	(0.0925)	(0.00755)	(0.0778)
Observations	1,605,977	1,605,977	1,605,977	1,605,977
R^2	0.593	0.603	0.683	0.736
Month Fixed Effects	Yes	Yes	Yes	Yes
Account Fixed Effects	Yes	Yes	Yes	Yes

- In Panel A, we focus on the 29 neighboring areas whose postal code numbers are adjacent to the postal code numbers of the treatment areas.
- In Panel B, we consider the remaining 30 distant postal areas as the control.

Automobile Purchases

- To test the channel of automobile expenditures, we use monthly automobile transaction data in Delhi.
- The dataset contains more than 3 million vehicle registration records of all the vehicle registrations in Delhi from April 2015 to February 2020.

	F	ull Sample	2	Control			Treatment		
	Obs.	Mean	St.Dev.	Obs.	Mean	St.Dev.	Obs.	Mean	St.Dev.
Variable									
Non-Four-Wheeler	3,191,266	0.74	0.44	1,483,656	0.75	0.43	1,707,610	0.74	0.44
Four-Wheeler	3,191,266	0.26	0.44	1,483,656	0.25	0.43	1,707,610	0.26	0.44
Price of Non-Four-Wheeler	2,374,082	68376	1457884	1,112,770	66246	200628	1,261,312	70255	1991237
Price of Four-Wheeler	817,184	840663	1039530	370,886	813157	1019981	446,298	863521	1054956

- We test for the likelihood of households to substitute across different types of vehicles through a linear probability model.
- Then we aggregate our data at the postal code level to estimate the impacts on the spending on private vehicles.

Automobile Purchases

Dependent Variable:	Indicator for Four-Wheeler	Share of Four-Wheeler
	(1)	(2)
Treated imes Post	-0.00391*	-0.0120***
	(0.00237)	(0.00396)
Observations	20,995,138	45,358
R^2	0.073	0.554
Month Fixed Effects	Yes	Yes
Postal Code Fixed Effects	Yes	Yes

- In Column (1), the probability that a registered vehicle is a four-wheeler decreases by 0.4% after subway expansions.
- In Column (2), subway expansions decrease the postal-code-level market share of four-wheelers by 1.2%.
- Explanation: households take non-four-wheelers from their home to the subway station, before relying on subway for long-distance travel.

Automobile Purchases

Panel A: Vehicles Purchase				
Dependent Variable:	Non-Four-Wheeler	Four-Wheeler	Average Spending	Total Spending
	(1)	(2)	(3)	(4)
Treated \times Post	-2.236	-6.956*	-0.0469***	-0.0652**
	(9.560)	(3.673)	(0.0133)	(0.0256)
Observations	45,358	45,358	45,358	45,358
R^2	0.922	0.924	0.418	0.889
Month Fixed Effects	Yes	Yes	Yes	Yes
Postal Code Fixed Effects	Yes	Yes	Yes	Yes
Panel B: Vehicles Purchase by Type				
Dependent Variable:	Non-Four-Wheeler:	Non-Four-Wheeler:	Four-Wheeler:	Four-Wheeler:
	High Quality	Low Quality	High Quality	Low Quality
	(1)	(2)	(3)	(4)
Treated \times Post	4.729	-6.965	2.079*	-9.034**
	(3.691)	(7.869)	(1.196)	(3.861)
Observations	45,358	45,358	45,358	45,358
R^2	0.860	0.914	0.910	0.903
Month Fixed Effects	Yes	Yes	Yes	Yes
Postal Code Fixed Effects	Yes	Yes	Yes	Yes

- Subway expansions reduce the demand for four-wheelers, the average cost of each vehicle, and total spending on automobiles.
- Results driven by low-quality four wheelers.
- Lower-income households who buy low-quality vehicles could improve their financial well-being as they buy less private vehicles.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Additional Evidence of Heterogeneity by Income

Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment
	Delinquency	Amount)	Prepayment	Amount)
	(1)	(2)	(3)	(4)
Treated \times Post	-0.0404**	-0.325*	0.00986	0.0366
	(0.0180)	(0.168)	(0.0116)	(0.123)
Treated imes Post imes 1 (lowest-income)	-0.0128	-0.110	-0.00154	0.118
	(0.0242)	(0.193)	(0.0231)	(0.267)
<i>Treated</i> \times <i>Post</i> \times 1(lower-middle-income)	-0.0586***	-0.525***	0.0370*	0.378**
	(0.0200)	(0.180)	(0.0192)	(0.179)
Observations	1,101,831	1,101,831	1,101,831	1,101,831
R^2	0.584	0.593	0.681	0.733
Month Fixed Effects	Yes	Yes	Yes	Yes
Account Fixed Effects	Yes	Yes	Yes	Yes

- Lower-middle-income households are more likely to replace private vehicle use with subway transportation, enhancing their financial flexibility.
- Lowest-income households, who likely could not afford private vehicles prior to the subway expansions, do not benefit from reduced vehicle expenditures.

Alternative Explanation - Individual Income

- 1. Subway \implies Higher productivity \implies Higher income
 - The salaries for jobs in private firms are more performance-related.
 - If this channel holds, subway expansions should benefit individuals with jobs in the private sector more.
 - Compare residents who work in the public sector with those who work for private companies.
- 2. Subway \implies Higher participation rate \implies Higher income
 - Females have lower labor participation rate.
 - If this channel holds, females should be better off, relative to males.
 - Test this channel according to the heterogeneous effects by gender.

Alternative Explanation - Individual Income

Panel A: Occupation				
Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment
	Delinquency	Amount)	Prepayment	Amount)
	(1)	(2)	(3)	(4)
Treated \times Post	-0.0559***	-0.547***	0.0156	0.0459
	(0.0151)	(0.135)	(0.00981)	(0.0934)
<i>Treated</i> \times <i>Post</i> \times 1(Private Company)	0.0172	0.226*	-0.00263	0.0814
	(0.0127)	(0.116)	(0.0115)	(0.100)
Observations	2,484,192	2,484,192	2,484,192	2,484,192
R^2	0.597	0.603	0.684	0.737
Month Fixed Effects	Yes	Yes	Yes	Yes
Account Fixed Effects	Yes	Yes	Yes	Yes
Panel B: Gender				
Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment
	Delinquency	Amount)	Prepayment	Amount)
	(1)	(2)	(3)	(4)
Treated \times Post	-0.0455***	-0.409***	0.0241*	0.269*
	(0.0125)	(0.112)	(0.0125)	(0.152)
$\mathit{Treated} imes \mathit{Post} imes \mathbb{1}(Male)$	0.00192	0.0248	-0.0149	-0.240
	(0.0124)	(0.110)	(0.0126)	(0.163)
Observations	2,484,192	2,484,192	2,484,192	2,484,192
R^2	0.597	0.603	0.684	0.737
Month Fixed Effects	Yes	Yes	Yes	Yes
Account Fixed Effects	Yes	Yes	Yes	Yes

Alternative Explanation - Macroeconomic Conditions

 The areas with subway expansions may grow fast relative to other areas ⇒ better mortgage performance.

Dependent Variable:	Annual	Log(Annual	House	Log(House	Loan	Log(Loan
	Income	Income)	Value	Value)	Amount	Amount)
	(1)	(2)	(3)	(4)	(5)	(6)
Treated \times Post	-58,229	-0.101	-574,132	-0.0183	-797,315	-0.154
	(50,084)	(0.130)	(878,874)	(0.0601)	(1.319e+06)	(0.373)
Observations	10,106	10,106	15,273	15,273	4,681	4,681
R^2	0.167	0.189	0.274	0.390	0.337	0.315
Month Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Postal Code Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes

• No evidence supporting this channel

Alternative Explanation - Macroeconomic Conditions

- Higher loan to value (LTV) ratio \implies higher risk of negative equity \implies strategic defaulters.
- Suppose our results are driven by increasing house value, we should expect high LTV households become less delinquent.

Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment
	Delinquency	Amount)	Prepayment	Amount)
	(1)	(2)	(3)	(4)
Treated \times Post	-0.0503***	-0.434***	0.0164**	0.119
	(0.0102)	(0.0913)	(0.00751)	(0.0827)
<i>Treated</i> \times <i>Post</i> \times 1(LTV > 0.8)	0.0433*	0.295	-0.0183	-0.121
	(0.0257)	(0.225)	(0.0255)	(0.257)
Observations	2,484,192	2,484,192	2,484,192	2,484,192
R^2	0.597	0.603	0.684	0.737
Month Fixed Effects	Yes	Yes	Yes	Yes
Account Fixed Effects	Yes	Yes	Yes	Yes

Full Sample

Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment
	Delinquency	Amount)	Prepayment	Amount)
	(1)	(2)	(3)	(4)
Treated $ imes$ Post	-0.0442***	-0.392***	0.0143**	0.107
	(0.0102)	(0.0898)	(0.00703)	(0.0751)
Observations	2,517,460	2,517,460	2,517,460	2,517,460
R^2	0.597	0.603	0.684	0.737
Month Fixed Effects	Yes	Yes	Yes	Yes
Account Fixed Effects	Yes	Yes	Yes	Yes

Fixed Postal Code Effects

Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment
	Delinquency	Amount)	Prepayment	Amount)
	(1)	(2)	(3)	(4)
Treated × Post	-0.0442***	-0.392***	0.0138**	0.102
	(0.0101)	(0.0892)	(0.00701)	(0.0746)
Observations	2,484,192	2,484,192	2,484,192	2,484,192
R ²	0.597	0.603	0.684	0.737
Month Fixed Effects	Yes	Yes	Yes	Yes
Account Fixed Effects	Yes	Yes	Yes	Yes
Postal Code Fixed Effects	Yes	Yes	Yes	Yes

Placebo Test

• Examine data from three years prior to the actual expansions.

Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment	
	Delinquency	Amount)	Prepayment	Amount)	
	(1)	(2)	(3)	(4)	
Treated × Post(Placebo)	-0.0281	-0.225	0.0168	0.0607	
	(0.0187)	(0.166)	(0.0137)	(0.147)	
Observations	2,484,192	2,484,192	2,484,192	2,484,192	
R^2	0.597	0.603	0.684	0.737	
Month Fixed Effects	Yes	Yes	Yes	Yes	
Account Fixed Effects	Yes	Yes	Yes	Yes	

- The Indian interest rates exhibited a downward trend.
- Even though we control for time-fixed effects, we are concerned about the different responses to interest rate changes across postal code areas.
- We consider the sub-sample with households whose mortgage interest rates are floating.

Dependent Variable:	Indicator for	Log(Delinquency	Indicator for	Log(Prepayment		
	Delinquency	Amount)	Prepayment	Amount)		
	(1)	(2)	(3)	(4)		
Treated $ imes$ Post	-0.0496***	-0.431***	0.0193**	0.147		
	(0.0109)	(0.0940)	(0.00849)	(0.0923)		
Observations	2,125,124	2,125,124	2,125,124	2,125,124		
R^2	0.599	0.605	0.686	0.739		
Month Fixed Effects	Yes	Yes	Yes	Yes		
Account Fixed Effects	Yes	Yes	Yes	Yes		

Policy Implications

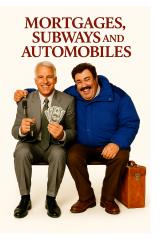
• We estimate the reduction in default rate as:

 $\Delta P(\text{Default}) = \Delta P(\text{Delinquency}) \times P(\text{Default}|\text{Delinquency})$

- From February 2020 data: P(Default|Delinquency) = 0.019
- Estimated drop in delinquency: $\Delta P(\text{Delinquency}) = 0.0442$
- Implied drop in default rate: $0.0442 \times 0.019 \approx 0.08\%$
- Among 9,681 mortgages in Delhi, 72 (0.74%) defaulted.

Hence, subway expansions reduce default risk by approximately 11% relative.

Conclusion



- The opening of a new subway station decreases the mortgage delinquency rate and increases the prepayment rate in the same postal code.
- The effect attenuates when we move further away from the subway station.
- Our results are driven by reduced reliance on automobiles. Households are able to enjoy cost savings by spending less on transportation.

Additional Tables

Table: Summary Statistics - Vehicle (Postal Code Level)

	Full Sample		Control		Treatment				
	Obs.	Mean	St.Dev.	Obs.	Mean	St.Dev.	Obs.	Mean	St.Dev.
Variable									
Non-Four-Wheeler	5,722	415	490	3,303	337	412	2,419	512	563
Non-Four-Wheeler (High Quality)	5,722	85	102	3,303	70	87	2,419	106	117
Non-Four-Wheeler (Low Quality)	5,722	330	396	3,303	267	333	2,419	415	454
Four-Wheeler	5,722	143	127	3,303	112	113	2,419	184	133
Four-Wheeler (High Quality)	5,722	41	41	3,303	31	36	2,419	55	43
Four-Wheeler (Low Quality)	5,722	102	93	3,303	81	82	2,419	129	101
Average Spending	5,722	13	0.66	3,303	12	0.73	2,419	13	0.53
Total Spending	5,722	18	1.59	3,303	18	1.86	2,419	19	0.76

Notes: Table reports means and standard deviations using the full sample, sample in the postal codes without subway expansions (Control), and sample in the postal codes with subway expansions (Treatment) from April 2015 to February 2020. Variables are the monthly registration number of non-four-wheeler, four-wheeler, logarithmic average spending on each vehicle, and logarithmic total spending on vehicles at postal code level. We consider a vehicle to be high (low) quality if its price is higher (lower) than the average price of the vehicle registered during the time period.

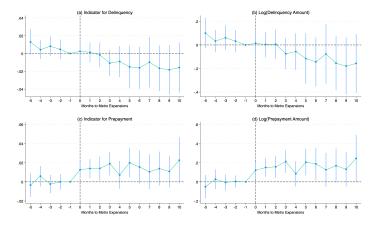
Additional Tables

Table: Robustness Check - Inverse Hyperbolic Sine Function

Dependent Variable:	Asinh(Delinquency Amount)	Asinh(Prepayment Amount)		
	(1)	(2)		
Treated \times Post	-0.423***	0.111		
	(0.0961)	(0.0790)		
Observations	2,484,192	2,484,192		
R^2	0.603	0.735		
Month Fixed Effects	Yes	Yes		
Account Fixed Effects	Yes	Yes		

Notes: This table reports the impact of the opening of a subway station between 2015 and 2019. The dependent variables encompass delinquency amount and prepayment amount. The amounts are reported by inverse hyperbolic sine transformation. For the co-variate, *Treated* \times *Post* an indicator variable that is equal to one after the opening of the subway station in the same postal code, and zero otherwise. Clustering is done at the postal code level. The robust standard errors are reported in parenthesis. *, ** and * * * denote statistically significant levels at 10%, 5% and 1% respectively.

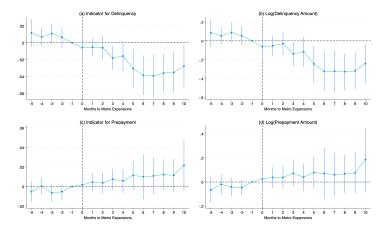
Event Study of Subway Expansions - Close Postal Code Areas



Event Study of Subway Expansions - Far Postal Code Areas

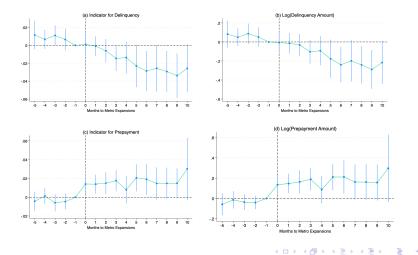


Robustness Check - Full Sample



<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > 37/38

Robustness Check - Fix Postal Code Effects



38 / 38